### We claim:

## 1. A process for preparing a compound of formula (7)

$$\left( \begin{array}{c} X_{n} \\ X_{n} \\ X_{n} \end{array} \right)_{(R^{6})_{s}} \left( \begin{array}{c} (R^{2})_{s} \\ (R^{2})_{s} \\ (R^{6})_{s} \end{array} \right)_{(R^{6})_{s}} \left( \begin{array}{c} (R^{2})_{s} \\ (R^{2})_{s} \\ (R^{6})_{s} \end{array} \right)$$

or a pharmaceutically acceptable salt thereof;

wherein

n is 0, 1, or 2;

s is 0, 1, 2, 3, or 4;

u and v are each independently selected from 0, 1, 2, or 3;

X is selected from O, S, S(O), SO<sub>2</sub>, CH<sub>2</sub>, CHR<sup>5</sup>, and C(R<sup>5</sup>)<sub>2</sub>;

provided that when n is 0, X is selected from CH<sub>2</sub>, CHR<sup>5</sup>, and C(R<sup>5</sup>)<sub>2</sub>;

R<sup>1</sup> and R<sup>2</sup> are each independently selected from alkoxy, alkyl, and halo; and when s is 2, 3, or 4, each R<sup>5</sup> on the ring is independently selected from alkoxy, alkyl, and aryl, wherein the alkyl can optionally form a fused three- to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;

provided that the two heterocyclic rings substituting the imidazole rings are identical; the process comprising:

(a) reacting a compound of formula (3)

(3);

wherein

u, v,  $R^1$ , and  $R^2$  are as described for formula (7); and LG is a leaving group;

with a compound of formula (4)

wherein PG is a nitrogen protecting group;

- (b) treating the product of step (a) with a reagent selected from ammonium acetate, ammonium formate, ammonium sulfamate, ammonium phosphate, ammonium citrate, ammonium carbamate, and ammonia; and
- (c) treating the product of step (b) with a deprotecting agent.
  - 2. The process as claimed in claim 1 wherein

n is 1; s is 0; u and v are each 0; and X is  $CH_2$ .

- 3. The process as claimed in claim 1 wherein LG is a halide.
- 4. The process as claimed in claim 3 wherein the halide is a bromide.

- 5. The process as claimed in claim 1 wherein step (a) is conducted with a base.
- 6. The process as claimed in claim 5 wherein the base is diisopropylethylamine.
- 7. The process as claimed in claim 1 wherein the reagent used in step (b) is ammonium acetate.
- 8. The process as claimed in claim 1 wherein PG is represented by the formula:

### wherein

- ss denotes the point of attachment to the parent molecular moiety; and R' is selected from alkyl, aryl, and arylalkyl.
- 9. The process as claimed in claim 8 wherein PG is tert-butoxycarbonyl.
- 10. The process as claimed in claim 9 wherein the deprotecting agent of step (c) is an acid.
- 11. The process as claimed in claim 10 wherein the acid is hydrochloric acid.

Dated this 8th day of February 2010

[NEHA SRIVASTAVA] IN/PA 1342

OF REMFRY & SAGAR

ATTORENY FOR THE APPLCIANT(S)

Maryado of Capy 18: 854 Decry 2010. PCT/US2008/071696

#### **CLAIMS**

What is claimed is:

# 5 1. A process for preparing a compound of formula (7)

(7);

or a pharmaceutically acceptable salt thereof; wherein

n is 0, 1, or 2;

s is 0, 1, 2, 3, or 4;

u and v are each independently selected from 0, 1, 2, or 3;

X is selected from O, S, S(O), SO<sub>2</sub>, CH<sub>2</sub>, CHR<sup>5</sup>, and C(R<sup>5</sup>)<sub>2</sub>; provided that when n is 0, X is selected from CH<sub>2</sub>, CHR<sup>5</sup>, and C(R<sup>5</sup>)<sub>2</sub>;

- 15 R<sup>1</sup> and R<sup>2</sup> are each independently selected from alkoxy, alkyl, and halo; and when s is 2, 3, or 4, each R<sup>5</sup> on the ring is independently selected from alkoxy, alkyl, and aryl, wherein the alkyl can optionally form a fused three- to six-membered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;
- 20 provided that the two heterocyclic rings substituting the imidazole rings are identical; the process comprising:
  - (a) reacting a compound of formula (3)

$$\begin{array}{c} O \\ \downarrow G \\ \downarrow$$

25 wherein

u, v, R1, and R2 are as described for formula (7); and

LG is a leaving group; with a compound of formula (4)

- 5 wherein PG is a nitrogen protecting group;
  - (b) treating the product of step (a) with a reagent selected from ammonium acetate, ammonium formate, ammonium sulfamate, ammonium phosphate, ammonium citrate, ammonium carbamate, and ammonia; and
  - (c) treating the product of step (b) with a deprotecting agent.

10 as claimed in

2. The process of claim 1 wherein

n is 1;

s is 0;

u and v are each 0; and

15 X is CH<sub>2</sub>.

-, .

20

as claimed in

- 3. The process of claim 1 wherein LG is a halide.
- 4. The process of claim 3 wherein the halide is a bromide.

- 5. The process of claim 1 wherein step (a) is conducted with a base.
- 6. The process of claim 5 wherein the base is diisopropylethylamine.
- 7. The process of claim 1 wherein the reagent used in step (b) is ammonium acetate.
  - 8. The process of claim 1 wherein PG is represented by the formula:

5

10

9.

wherein

denotes the point of attachment to the parent molecular moiety; and R' is selected from alkyl, aryl, and arylalkyl.

- The process of claim 8 wherein PG is tert-butoxycarbonyl.
  - The process of claim 9 wherein the deprotecting agent of step (c) is an acid. 10. as electored in
  - The process of claim 10 wherein the acid is hydrochloric acid. 11.

A process for preparing a compound of formula (I) 12.

$$O = \begin{pmatrix} R^9 \\ N \\ N \\ R^9 \end{pmatrix} \begin{pmatrix} R^5 \\ N \\ N \\ R^9 \end{pmatrix} \begin{pmatrix} R^5 \\ N \\ N \\ R^9 \end{pmatrix} \begin{pmatrix} R^5 \\ N \\ N \\ R^9 \end{pmatrix}$$

wherein

n is 0, 1, or 2; 15

s is 0, 1, 2, 3, or 4;

u and v are each independently selected from 0, 1, 2, or 3;

X is selected from O, S, S(O), SO<sub>2</sub>, CH<sub>2</sub>, CHR<sup>5</sup>, and C(R<sup>5</sup>)<sub>2</sub>; provided that when n is 0, X is selected from CH<sub>2</sub>, CHR<sup>5</sup>, and C(R<sup>5</sup>)<sub>2</sub>;

R<sup>1</sup> and R<sup>2</sup> are each independently selected from alkoxy, alkyl, and halo; and 20 when s is 2, 3, or 4, each R<sup>5</sup> on the ring is independently selected from alkoxy, alkyl, and aryl, wherein the alkyl can optionally form a fused three- to sixmembered ring with an adjacent carbon atom, wherein the three- to six-membered ring is optionally substituted with one or two alkyl groups;

provided that the two heterocyclic rings substituting the imidazole rings are identical; 25 and

R<sup>9</sup> is selected from alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, aryl, arylalkenyl, arylalkoxy, arylalkyl, aryloxyalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, cycloalkyloxyalkyl, haloalkyl, heterocyclyl, heterocyclylalkenyl, heterocyclylalkoxy, heterocyclylalkyl, heterocyclyloxyalkyl, hydroxyalkyl, -NR°R<sup>d</sup>, (NR°R<sup>d</sup>)alkenyl, (NR°R<sup>d</sup>)alkyl, and (NR°R<sup>d</sup>)carbonyl;

- 5 the process comprising:
  - (a) reacting a compound of formula (3)

$$(R^2)_{u} \qquad (R^1)_{v}$$

$$LG \qquad (3);$$

wherein

10 u, v, R<sup>1</sup>, and R<sup>2</sup> are as described for formula (7); and LG is a leaving group;

with a compound of formula (4)

$$\begin{array}{c|c}
 & PG \\
 & N - () \\
 & N \\
 & X \\
 & N \\$$

- 15 wherein PG is a nitrogen protecting group;
  - (b) treating the product of step (a) with a reagent selected from ammonium acetate, ammonium formate, ammonium sulfamate, ammonium phosphate, ammonium citrate, ammonium carbamate, and ammonia; and;
- (c) treating the product of step (b) with a deprotecting agent to provide a compound of formula (7)

$$\left( \begin{array}{c} (\mathbb{R}^{2})_{ij} & (\mathbb{R}^{1})_{i} \\ (\mathbb{R}^{2})_{ij} & (\mathbb{R}^{1})_{i} \\ (\mathbb{R}^{5})_{s} \end{array} \right)_{n}$$

(7); and

(d) treating the compound of formula (7) with a compound of formula (8)

10

HO R<sup>9</sup>
(8);

wherein R9 is as defined above.

- '5 13. The process of claim 12 wherein n is 1; s is 0; u and v are each 0; and X is CH<sub>2</sub>.
- 14. The process of claim 12 wherein LG is a halide.
  - 15. The process of claim 14 wherein the halide is a bromide.
- 15 16. The process of claim 12 wherein step (a) is conducted with a base.
  - 17. The process of claim 16 wherein the base is diisopropylethylamine.
- , 18. The process of claim 12 wherein the reagent used in step (b) is ammonium 20 acetate.
  - 19. The process of claim 12 wherein PG is represented by the formula:

wherein

- 25 s denotes the point of attachment to the parent molecular moiety; and R' is selected from alkyl, aryl, and arylalkyl.
  - 20. The process of claim 19 wherein PG is tert-butoxycarbonyl.
- 30 21. The process of claim 20 wherein the deprotecting agent of step (c) is an acid.

.22. The process of claim 21 wherein the acid is hydrochloric acid.

Dated this 8<sup>th</sup>

day of February,

2010.

[HRISHIKESH RAY CHAUDHURY] OF REMFRY & SAGAR ATTORNEY FOR THE APPLIÇANTS.