We Claim

1. A compound of Formula IV:

\[
\begin{align*}
\text{Formula IV} \\
\end{align*}
\]

or a pharmaceutically acceptable salt, thereof;

wherein:

- \(R^1 \) is H;
- \(R^3 \) is OR\(^a\);
- \(R^5 \) is H;
- \(R^6 \) is CN, methyl, ethenyl, or ethynyl;
- each \(n \) is independently 0, 1, or 2;
- each \(R^a \) is independently H, (C\(_1\)-C\(_8\))alkyl, (C\(_2\)-C\(_8\))alkenyl, (C\(_2\)-C\(_8\))alkynyl, aryl(C\(_1\)-C\(_8\))alkyl, (C\(_4\)-C\(_8\))carbocyclalkyl, -C(=O)R\(^{11}\), -C(=O)OR\(^{11}\), -C(=O)NR\(^{11}\)R\(^{12}\), -C(=O)SR\(^{11}\), -S(O)R\(^{11}\), -S(O)\(_2\)R\(^{11}\), -S(O)(OR\(^{11}\)), -S(O)\(_2\)(OR\(^{11}\)), or \(-\text{SO}_2\text{NR}^{11}\)R\(^{12}\);
- \(R^7 \) is H, -C(=O)R\(^{11}\), -C(=O)OR\(^{11}\), \(-\text{P}_{\text{W}^1}\)\(-\text{P}_{\text{W}^2}\),

\[\begin{align*}
\text{Y} & \quad \text{W}^1 \\
\text{W}^2 & \quad \text{Y}^1
\end{align*}\]

- each \(Y \) or \(Y^1 \) is, independently, O, S, NR, +N(O)(R), N(OR), +N(O)(OR), or N−NR\(_2\);
- \(W^1 \) and \(W^2 \), when taken together, are \(-Y^3(C(R^3)_2)\)Y\(^3\); or one of \(W^1 \) or \(W^2 \) together with either \(R^3 \) or \(R^4 \) is \(-Y^3\) and the other of \(W^1 \) or \(W^2 \) is Formula Ia; or \(W^1 \) and \(W^2 \) are each, independently, a group of the Formula Ia:
Formula Ia

wherein:
each Y^2 is independently a bond, O, CR$_2$, NR, $^+$N(O)(R), N(OR), $^+$N(O)(OR), N−NR$_2$, S, S−S, S(O), or S(O)$_2$;
each Y^3 is independently O, S, or NR;
M2 is 0, 1 or 2;
each R^x is independently R' or the formula:

![Chemical Structure](image)

wherein:
each M1a, M1c, and M1d is independently 0 or 1;
M12c is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12;
each R^y is independently H, F, Cl, Br, I, OH, R, -C(=Y$_1$)R, -C(=Y$_1$)OR, -
C(=Y$_1$)N(R)$_2$, -N(R)$_2$, -SR, -S(O)R, -S(O)$_2$R, -S(O)(OR), -
S(O)$_2$(OR), -OC(=Y$_1$)R, -OC(=Y$_1$)OR, -OC(=Y$_1$)(N(R)$_2$), -SC(=Y$_1$)R, -
SC(=Y$_1$)OR, -SC(=Y$_1$)(N(R)$_2$), -N(R)C(=Y$_1$)R, -N(R)C(=Y$_1$)OR, -
N(R)C(=Y$_1$)N(R)$_2$, -SO$_2$NR$_2$, -CN, -N$_3$, -NO$_2$, -OR, or W$_3$; or when taken
together, two R^y on the same carbon atom form a carbocyclic ring of 3 to 7
carbon atoms;
each R is independently H, (C$_1$-C$_8$) alkyl, (C$_1$-C$_8$) substituted alkyl, (C$_2$-C$_8$)alkenyl,
(C$_2$-C$_8$) substituted alkenyl, (C$_2$-C$_8$) alkylnyl, (C$_2$-C$_8$) substituted alkylnyl,
C$_6$−C$_{20}$ aryl, C$_6$−C$_{20}$ substituted aryl, C$_2$−C$_{20}$ heterocyclyl, C$_2$−C$_{20}$ substituted
heterocyclyl, arylalkyl or substituted arylalkyl;
W$_3$ is W$_4$ or W$_5$; W$_4$ is R, -C(Y$_1$)R, -C(Y$_1$)W$_5$, -SO$_2$R, or -SO$_2$W$_5$; and W$_5$ is a
carbocycle or a heterocycle wherein W$_5$ is independently substituted with 0 to 3
R^y groups;
R^8 is NH$_2$;
R^9 is H;
each R^{11} or R^{12} is independently H, (C$_1$-C$_8$)alkyl, (C$_2$-C$_8$)alkenyl, (C$_2$-
C$_8$)alkynyl, (C$_4$-C$_8$)carbocyclalkyl, optionally substituted aryl, optionally substituted
heteroaryl, -C(=O)(C$_1$-C$_8$)alkyl, -S(O)$_n$(C$_1$-C$_8$)alkyl or aryl(C$_1$-C$_8$)alkyl; or R^{11} and R^{12} taken
together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic
ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with
-O-, -S- or −NR$_a$−.

2. The compound as claimed in claim 1 wherein each R^1, R^5, and R^7 is H and R^3 is OR$_a$.

3. A compound that is
or a pharmaceutically acceptable salt thereof.

Dated this 26 Day of August 2019

--Digitally Signed--

(Shakira N)
REG. No: IN/PA-972
of De Penning & De Penning
Agent for the Applicants