We claim:

1. A compound having the general formula Ib:

 ![chemical structure](Ib)

 wherein

 X, Y and Z are CH;

 o is 0; n is 0; m is 0, 1, 2, 3 or 4;

 A is C=O

 W is NH;

 R² is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₃₋₁₀ cycloalkenyl, C₂₋₁₀ alkynyl, C₁₋₁₀ haloalkyl, -OH, -OR⁵, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkoxy, C₃₋₁₅ cycloalkylalkoxy, C₃₋₁₅ cycloalkylalkyl, -CN, -NO₂, -NH₂, -N(R⁵)₂, -C(O)R⁵, -C(O)OR⁵, -C(O)N(R⁵)₂, -SR⁵, -S(O)R⁵, -S(O)₂R⁵, -S(O)₂N(R⁵)₂, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

 R³ is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, hydroxyl, -OR⁶, -CN, -NO₂, -NH₂, -N(R⁶)C(O)R⁶, -C(O)R⁶, -C(O)OR⁶, -C(O)N(R⁶)₂, -S(O)R⁶, -S(O)₂R⁶, -S(O)₂N(R⁶)₂, aryl, e.g. phenyl, benzyl, heteroaryl, heterocyclyl, any of which is optionally substituted, or two groups of R³ are connected to each other to make five or six membered cyclic and heterocyclic rings;

 R⁵ and R⁶ are, at each occurrence, independently selected from the group consisting of hydrogen, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₃₋₁₀ cycloalkenyl, C₂₋₁₀ alkynyl, C₁₋₁₀ haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

 R¹⁰ is a moiety selected from the group consisting of
wherein \(m' \) is 0, 1, 2, 3 or 4 and \(n' \) is 0, 1, 2, or 3;

\(R^{11} \) is, at each occurrence, independently selected from the group consisting of hydrogen, \(\text{C}_1-\text{C}_{10} \) alkyl, \(\text{C}_3-\text{C}_{10} \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_3-\text{C}_{10} \) cycloalkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, -OH, -OR\(^{13} \), \(\text{C}_1-\text{C}_{10} \) alkoxy, \(\text{C}_3-\text{C}_{15} \) cycloalkylalkoxy, \(\text{C}_3-\text{C}_{15} \) cycloalkylalkyl, -NH\(_2\), -N(R\(^{13} \))\(_2\), -C(O)R\(^{13} \), -C(O)OR\(^{13} \), -C(O)N(R\(^{13} \))\(_2\), -S(O)R\(^{13} \), -S(O)\(_2\)R\(^{13} \), -S(O)\(_2\)N(R\(^{13} \))\(_2\), aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

\(R^{12} \) is, at each occurrence, independently selected from the group consisting of hydrogen, \(\text{C}_1-\text{C}_{10} \) alkyl, \(\text{C}_3-\text{C}_{10} \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_3-\text{C}_{10} \) cycloalkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, hydroxyl, -OR\(^{14} \), -C(O)R\(^{14} \), -C(O)OR\(^{14} \), -CN, -NO\(_2\), -NH\(_2\), -N(R\(^{14} \))\(_2\), -C(O)N(R\(^{14} \))\(_2\), -S(O)R\(^{14} \), -S(O)\(_2\)R\(^{14} \), -S(O)\(_2\)N(R\(^{14} \))\(_2\), aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

\(R^{13} \) is, at each occurrence, independently selected from the group consisting of hydrogen, \(\text{C}_1-\text{C}_{10} \) alkyl, \(\text{C}_3-\text{C}_{10} \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_3-\text{C}_{10} \) cycloalkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl; and

\(R^{14} \) is, at each occurrence, independently selected from the group consisting of hydrogen, \(\text{C}_1-\text{C}_8 \) alkyl optionally substituted with at least one hydroxyl or halogen; \(\text{C}_3-\text{C}_7 \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_3-\text{C}_{10} \) cycloalkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl and heterocyclyl.
2. The compound as claimed in claim 1, having one of the formulae 1-352,

4. The compound as claimed in claim 1, having formula 177.

5. A compound having the general formula Ib:

![Image](https://example.com/ib.png)

wherein

X, Y and Z are CH;

o is 1; n is 0; m is 1, 2, 3 or 4;

A is C=O;

W is NH;

R^2 is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_2-C_{10} alkenyl, C_3-C_{10} cycloalkenyl, C_2-C_{10} alkynyl, C_1-C_{10} haloalkyl, -OR5, C_1-C_{10} alkoxy, C_3-C_{10} cycloalkoxy, C_3-C_{15} cycloalkylalkoxy, C_3-C_{15} cycloalkylalkyl, -CN, -NO$_2$, -NH$_2$, -N(R5)$_2$, -C(O)R5, -C(O)OR5, -C(O)N(R5)$_2$, -SR5, -S(O)R5, -S(O)$_2$R5, -S(O)$_2$N(R5)$_2$, aryl, e.g. phenyl, benzyl, and heterocyclyl;

R^3 is, at each occurrence, independently selected from the group consisting of halogen, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, hydroxyl, -OR6, -CN, -NO$_2$, -NH$_2$, -N(R6)C(O)R6, -C(O)R6, -C(O)N(R6)$_2$, -S(O)R6, -S(O)$_2$R6, -S(O)$_2$N(R6)$_2$, aryl, e.g. phenyl, benzyl, heteroaryl, heterocyclyl, or two groups of R^3 are connected to each other to make five or six membered cyclic and heterocyclic rings;

R^5 and R^6 are, at each occurrence, independently selected from the group consisting of hydrogen, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_2-C_{10} alkenyl, C_3-C_{10} cycloalkenyl, C_2-C_{10} alkynyl, C_1-C_{10} haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

R^{10} is a moiety selected from the group consisting of
wherein m’ is 0, 1, 2, 3 or 4 and n’ is 0, 1, 2, or 3;

\[R^{11} \]

is, at each occurrence, independently selected from the group consisting of hydrogen, C\(_1\)-C\(_{10}\) alkyl, C\(_3\)-C\(_{10}\) cycloalkyl, C\(_2\)-C\(_{10}\) alkenyl, C\(_3\)-C\(_{10}\) cycloalkenyl, C\(_2\)-C\(_{10}\) alkynyl, C\(_1\)-C\(_{10}\) haloalkyl, -OH, -OR\(^{13}\), C\(_1\)-C\(_{10}\) alkoxy, C\(_3\)-C\(_{15}\) cycloalkylalkoxy, C\(_3\)-C\(_{15}\) cycloalkylalkyl, -NH\(_2\), -N(R\(^{13}\))\(_2\), -C(O)R\(^{13}\), -C(O)OR\(^{13}\), -C(O)N(R\(^{13}\))\(_2\), -S(O)R\(^{13}\), -S(O)\(_2\)R\(^{13}\), -S(O)\(_2\)N(R\(^{13}\))\(_2\), aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

\[R^{12} \]

is, at each occurrence, independently selected from the group consisting of hydrogen, C\(_1\)-C\(_{10}\) alkyl, C\(_3\)-C\(_{10}\) cycloalkyl, C\(_2\)-C\(_{10}\) alkenyl, C\(_3\)-C\(_{10}\) cycloalkenyl, C\(_2\)-C\(_{10}\) alkynyl, C\(_1\)-C\(_{10}\) haloalkyl, hydroxyl, -OR\(^{14}\), -C(O)R\(^{14}\), -CN, -NO\(_2\), -NH\(_2\), -N(R\(^{14}\))\(_2\), -C(O)N(R\(^{14}\))\(_2\), -S(O)R\(^{14}\), -S(O)\(_2\)R\(^{14}\), -S(O)\(_2\)N(R\(^{14}\))\(_2\), aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

\[R^{13} \]

is, at each occurrence, independently selected from the group consisting of hydrogen, C\(_1\)-C\(_{10}\) alkyl, C\(_3\)-C\(_{10}\) cycloalkyl, C\(_2\)-C\(_{10}\) alkenyl, C\(_3\)-C\(_{10}\) cycloalkenyl, C\(_2\)-C\(_{10}\) alkynyl, C\(_1\)-C\(_{10}\) haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl, and

\[R^{14} \]

is, at each occurrence, independently selected from the group consisting of hydrogen, C\(_1\)-C\(_8\) alkyl optionally substituted with at least one hydroxyl or halogen; C\(_3\)-C\(_7\) cycloalkyl, C\(_2\)-C\(_{10}\) alkenyl, C\(_3\)-C\(_{10}\) cycloalkenyl, C\(_2\)-C\(_{10}\) alkynyl, C\(_1\)-C\(_{10}\) haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl and heterocyclyl.
6. A pharmaceutical composition comprising a compound as claimed in any of claims 1–5, and a pharmaceutically acceptable carrier.

Dated 10th day of July, 2019

KAVITA ARORA
OF K & S PARTNERS
AGENT FOR THE APPLICANT(S)
IN/PA-2160
We claim:

1. A compound having the general formula Ia:

\[
\begin{array}{c}
\text{Ia}
\end{array}
\]

wherein

- \(m\) is 0, 1, 2, 3 or 4;
- \(n\) is 0, 1, 2, or 3;
- X, Y and Z are CH, N or N-oxide;

R\(^1\) is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C\(_1\)-C\(_{10}\) alkyl, C\(_1\)-C\(_3\) haloalkyl, C\(_2\)-C\(_2\) cycloalkyl, hydroxyl, oxO, OR\(^4\), C(O)OR\(^4\),
C(O)R\(^4\), C(O)N(R\(^4\))\(^2\), CN, NO\(_2\), NH\(_2\), N(R\(^4\))\(^2\), OR\(^5\)HetA, OR\(^5\)N(R\(^4\))\(^2\),
C(O)N(R\(^4\))R\(^4\)HetA, C(O)N(R\(^4\))R\(^4\)S(O)\(_2\)R\(^4\), S(O)\(_2\)N(R\(^4\))\(^2\),
S(O)\(_2\)R\(^4\), N(R\(^4\))C(O)R\(^4\), NR\(^6\), C(O)R\(^6\), C(O)OR\(^6\), C(O)N(R\(^6\))\(^2\),
C(O)S(O)\(_2\)R\(^6\), S(O)\(_2\)N(R\(^6\))\(^2\), aryl, e.g. phenyl, benzyl, and heterocyclyl, any of which is optionally substituted;

R\(^2\) is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C\(_1\)-C\(_{10}\) alkyl, C\(_2\)-C\(_3\) cycloalkyl, C\(_2\)-C\(_{10}\) alkenyl, C\(_2\)-C\(_{10}\) alkynyl,
C\(_2\)-C\(_{15}\) haloalkyl, OH, OR\(^5\), C\(_1\)-C\(_{10}\) alkoxy, C\(_2\)-C\(_{15}\) cycloalkoxy, C\(_2\)-C\(_{15}\) cycloalkylalkoxy,
C\(_1\)-C\(_{15}\) cycloalkylalkyl, CN, NO\(_2\), NH\(_2\), N(R\(^6\))\(^2\), C(O)R\(^6\), C(O)OR\(^6\), C(O)N(R\(^6\))\(^2\),
S(O)\(_2\)R\(^6\), S(O)\(_2\)N(R\(^6\))\(^2\), aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl, any of which is optionally substituted;

R\(^4\) is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C\(_1\)-C\(_{10}\) alkyl, C\(_2\)-C\(_{10}\) cycloalkyl, hydroxyl, OR\(^6\), CN, NO\(_2\), NH\(_2\), N(R\(^6\))C(O)R\(^6\),
C(O)R\(^6\), C(O)OR\(^6\), C(O)N(R\(^6\))\(^2\), S(O)\(_2\)R\(^6\), S(O)\(_2\)N(R\(^6\))\(^2\), aryl, e.g. phenyl, benzyl,
heteroaryl, heterocyclyl, any of which is optionally substituted, or two groups of R\(^2\) are connected to each other to make five or six membered cyclic and heterocyclic rings, any of which is optionally substituted;
R^4 is, at each occurrence, independently selected from the group consisting of hydrogen, \(\text{C}_1-\text{C}_{10} \) alkyl, \(\text{C}_2-\text{C}_{10} \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, \(\text{C}(O)R^5 \), \(\text{R}^2(\text{R}^5)\text{C}(O)R^6 \), \(\text{C}(O)OR^7 \), \(\text{R}^2(\text{R}^5)\text{C}(O)OR^6 \), \(\text{C}(O)N(\text{R}^5)_{\text{z}} \), \(\text{R}^2(\text{R}^5)\text{C}(O)N(\text{R}^5)_{\text{z}} \), \(\text{S}(\text{R}^5)\text{O} \), \(\text{S}(\text{R}^5)\text{O}_2 \), \(\text{S}(\text{R}^5)\text{N}(\text{R}^5)_{\text{z}} \), aryl, e.g., phenyl, benzyl, heteroaryl, and heterocyclyl, any of which is optionally substituted; and

R^5, R^6 and R^7 are, at each occurrence, independently selected from the group consisting of hydrogen, \(\text{C}_1-\text{C}_{10} \) alkyl, \(\text{C}_2-\text{C}_{10} \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, aryl, e.g., phenyl, benzyl, heteroaryl, and heterocyclyl, any of which is optionally substituted;

and pharmaceutically acceptable salts thereof.

21. The compound according to claim 1, having the general formula Ib:

$$\text{Ib}$$

wherein

- X, Y and Z are CH;
- o is 0, 1, 2 or 3; n is 0, 1, 2 or 3; m is 0, 1, 2, 3 or 4;
- A is NR14, C=O, C=S, OP(O), P=O, CH$_2$ or a heteroaryl selected from the group consisting of

$$\text{N}$$

- W is NH, C=O, O, S, CH$_2$ or NR14;

R^2 is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, \(\text{C}_1-\text{C}_{10} \) alkyl, \(\text{C}_2-\text{C}_{10} \) cycloalkyl, \(\text{C}_2-\text{C}_{10} \) alkenyl, \(\text{C}_2-\text{C}_{10} \) alkynyl, \(\text{C}_1-\text{C}_{10} \) haloalkyl, -OH, -OR5, \(\text{C}_1-\text{C}_{10} \) alkoxy, \(\text{C}_1-\text{C}_{10} \) cycloalkoxy, \(\text{C}_3-\text{C}_{15} \) cycloalkylalkoxy,
C₃-C₁₅ cycloalkylalkyl, -CN, -NO₂, -NH₂, -N(R⁵)₂, -C(O)R⁶, -C(O)OR⁶, -C(O)N(R⁶)₂, -SR⁶, -S(O)R⁶, -S(O)₂R⁶, -S(O)₂N(R⁶)₂, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

R³ is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, hydroxyl, -OR⁶, -CN, -NO₂, -NH₂, -N(R⁶)C(O)R⁶, -C(O)R⁶, -C(O)OR⁶, -C(O)N(R⁶)₂, -S(O)R⁶, -S(O)₂R⁶, -S(O)₂N(R⁶)₂, aryl, e.g. phenyl, benzyl, heteroaryl, heterocyclyl, any of which is optionally substituted, or two groups of R³ are connected to each other to make five or six membered cyclic and heterocyclic rings;

R⁵ and R⁶ are, at each occurrence, independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl;

R¹⁰ is a moiety selected from the group consisting of

wherein m' is 0, 1, 2, 3 or 4 and n’ is 0, 1, 2, or 3;
R11 is, at each occurrence, independently selected from the group consisting of hydrogen, C$_1$-C$_{10}$ alkyl, C$_3$-C$_{10}$ cycloalkyl, C$_2$-C$_{10}$ alkenyl, C$_3$-C$_{10}$ cycloalkenyl, C$_2$-C$_{10}$ alkylnyl, C$_1$-C$_{10}$ haloalkyl, -OH, -OR13, C$_1$-C$_{10}$ alkoxy, C$_3$-C$_{10}$ cycloalkoxy, C$_3$-C$_{15}$ cycloalkylalkoxy, C$_3$-C$_{15}$ cycloalkylalkyl, -NH$_2$, -N(R13)$_2$, -C(O)R13, -C(O)OR13, -C(O)N(R13)$_2$, -S(O)R13, -S(O)$_2$R13, -S(O)$_2$N(R13)$_2$, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl, any of which is optionally substituted;

R12 is, at each occurrence, independently selected from the group consisting of hydrogen, C$_1$-C$_{10}$ alkyl, C$_3$-C$_{10}$ cycloalkyl, C$_2$-C$_{10}$ alkenyl, C$_3$-C$_{10}$ cycloalkenyl, C$_2$-C$_{10}$ alkylnyl, C$_1$-C$_{10}$ haloalkyl, hydroxyl, -OR14, -C(O)R14, -R14(R14)$_2$C(O)R14, -C(O)OR14, -R14(R14)$_2$C(O)OR14, -CN, -NO$_2$, -NH$_2$, -N(R14)$_2$, -C(O)N(R14)$_2$, -R14(R14)$_2$C(O)N(R14)$_2$, -S(O)R14, -S(O)$_2$R14, -S(O)$_2$N(R14)$_2$, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl, any of which is optionally substituted;

R13 is, at each occurrence, independently selected from the group consisting of hydrogen, C$_1$-C$_{10}$ alkyl, C$_3$-C$_{10}$ cycloalkyl, C$_2$-C$_{10}$ alkenyl, C$_3$-C$_{10}$ cycloalkenyl, C$_2$-C$_{10}$ alkylnyl, C$_1$-C$_{10}$ haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl, any of which is optionally substituted; and

R14 is, at each occurrence, independently selected from the group consisting of hydrogen, C$_1$-C$_8$ alkyl optionally substituted with at least one hydroxyl or halogen; C$_3$-C$_7$ cycloalkyl, C$_2$-C$_{10}$ alkenyl, C$_3$-C$_{10}$ cycloalkenyl, C$_2$-C$_{10}$ alkylnyl, C$_1$-C$_{10}$ haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl and heterocyclyl, any of which is optionally substituted.

3.2. The compound as claimed in according to claim 1 or 2, having one of the formulae 1-352 as shown in Table 1.

and pharmaceutically acceptable salts thereof.

4. The compound as claimed in according to any of claims 1—3, claim 1, having one of the formulae 47, 54, 177 and 185 as shown in Table 1, and pharmaceutically acceptable salts thereof.

5. The compound according to any of claims 1—4, for use in the treatment of a bacterial infection.

6. The compound according to claim 5, wherein said bacterial infection is Tuberculosis.

5. A compound having the general formula Ib:

\[
\begin{array}{c}
\text{Ib} \\
\begin{array}{c}
\text{R}^2 \\
\text{m} \quad \text{Z} \quad \text{N} \\
\text{N} \quad \text{C} \quad \text{W} \\
\text{Y} \quad \text{X} \\
\text{R}^3 \\
\end{array}
\end{array}
\]

wherein

X, Y and Z are CH;

\(\circ \) is 1; n is 0; m is 1, 2, 3 or 4;

A is C=O;

W is NH;

R\(^2\) is, at each occurrence, independently selected from the group consisting of hydrogen, halogen, C\(_3\)C\(_{10}\) alkyl, C\(_3\)C\(_{10}\) cycloalkyl, C\(_2\)C\(_{10}\) alkenyl, C\(_3\)C\(_{10}\) cycloalkenyl, C\(_2\)C\(_{10}\) alkynyl, C\(_1\)C\(_{10}\) haloalkyl, -OR\(^5\), C\(_1\)C\(_{10}\) alkoxy, C\(_3\)C\(_{10}\) cycloalkoxy, C\(_3\)C\(_{15}\) cycloalkylalkoxy, C\(_3\)C\(_{15}\) cycloalkylalkyl, -CN, -NO\(_2\), -NH\(_2\), -N(R\(^5\))\(_2\), -C(O)R\(^5\), -C(O)OR\(^5\), -C(O)N(R\(^5\))\(_2\), -SR\(^5\), -S(O)R\(^5\), -S(O)\(_2\)R\(^5\), -S(O)\(_2\)N(R\(^5\))\(_2\), aryl, e.g. phenyl, benzyl, and heterocyclyl;
R3 is, at each occurrence, independently selected from the group consisting of halogen, C\textsubscript{1}-C\textsubscript{10} alkyl, C\textsubscript{3}-C\textsubscript{10} cycloalkyl, hydroxyl, -OR6, -CN, -NO\textsubscript{2}, -NH\textsubscript{2}, -N(R6)C(O)R6, -C(O)R6, -C(O)N(R6)\textsubscript{2}, -S(O)R6, -S(O)\textsubscript{2}R6, -S(O)\textsubscript{2}N(R6)\textsubscript{2}, aryl, e.g. phenyl, benzyl, heteroaryl, heterocycl, or two groups of R3 are connected to each other to make five or six membered cyclic and heterocyclic rings.

R5 and R6 are, at each occurrence, independently selected from the group consisting of hydrogen, C\textsubscript{1}-C\textsubscript{10} alkyl, C\textsubscript{3}-C\textsubscript{10} cycloalkyl, C\textsubscript{2}-C\textsubscript{10} alkenyl, C\textsubscript{3}-C\textsubscript{10} cycloalkenyl, C\textsubscript{2}-C\textsubscript{10} alkynyl, C\textsubscript{1}-C\textsubscript{10} haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocycl;

R10 is a moiety selected from the group consisting of

![Chemical structures](image)

wherein m' is 0, 1, 2, 3 or 4 and n' is 0, 1, 2, or 3;

R11 is, at each occurrence, independently selected from the group consisting of hydrogen, C\textsubscript{1}-C\textsubscript{10} alkyl, C\textsubscript{3}-C\textsubscript{10} cycloalkyl, C\textsubscript{2}-C\textsubscript{10} alkenyl, C\textsubscript{3}-C\textsubscript{10} cycloalkenyl, C\textsubscript{2}-C\textsubscript{10} alkynyl, C\textsubscript{1}-C\textsubscript{10} haloalkyl, -OH, -OR13, C\textsubscript{1}-C\textsubscript{10} alkoxy, C\textsubscript{3}-C\textsubscript{10} cycloalkoxy, C\textsubscript{3}-C\textsubscript{15} cycloalkylalkoxy, C\textsubscript{3}-C\textsubscript{15} cycloalkylalkyl, -NH\textsubscript{2}, -N(R13)\textsubscript{2}, -C(O)R13, -C(O)OR13, -C(O)N(R13)\textsubscript{2}, -S(O)R13, -S(O)\textsubscript{2}R13, -S(O)\textsubscript{2}N(R13)\textsubscript{2}, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocycl;

R12 is, at each occurrence, independently selected from the group consisting of hydrogen, C\textsubscript{1}-C\textsubscript{10} alkyl, C\textsubscript{3}-C\textsubscript{10} cycloalkyl, C\textsubscript{2}-C\textsubscript{10} alkenyl, C\textsubscript{3}-C\textsubscript{10} cycloalkenyl, C\textsubscript{2}-C\textsubscript{10} alkynyl, C\textsubscript{1}-C\textsubscript{10} haloalkyl, hydroxyl, -OR14, -C(O)R14, -CN, -NO\textsubscript{2}, -NH\textsubscript{2}, -N(R14)\textsubscript{2}, -C(O)N(R14)\textsubscript{2}, -S(O)R14, -S(O)\textsubscript{2}R14, -S(O)\textsubscript{2}N(R14)\textsubscript{2}, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocycl;
R^{13} is, at each occurrence, independently selected from the group consisting of hydrogen, C$_{1-10}$ alkyl, C$_{3-10}$ cycloalkyl, C$_{2-10}$ alkenyl, C$_{3-10}$ cycloalkenyl, C$_{2-10}$ alkenyl, C$_{1-10}$ haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl, and heterocyclyl, and

R^{14} is, at each occurrence, independently selected from the group consisting of hydrogen, C$_{1-8}$ alkyl optionally substituted with at least one hydroxyl or halogen; C$_{3-7}$ cycloalkyl, C$_{2-10}$ alkenyl, C$_{3-10}$ cycloalkenyl, C$_{2-10}$ alkenyl, C$_{1-10}$ haloalkyl, aryl, e.g. phenyl, benzyl, heteroaryl and heterocyclyl.

76. A pharmaceutical composition comprising a compound as claimed in according to any of claims 1—6, and a pharmaceutically acceptable carrier.

8. A method of treatment of a bacterial infection, in particular Tuberculosis, comprising the application of a suitable amount of a compound according to any of claims 1—6 or a pharmaceutical composition according to claim 7, to a person in need thereof.

9. A compound that competitively inhibits the specific binding of a compound according to any of claims 1—6.

10. A method of treatment of a bacterial infection, in particular Tuberculosis, comprising the application of a suitable amount of a compound, which compound is characterized by an ability to competitively inhibit the specific binding of a compound according to any of claims 1—6 or a pharmaceutical composition according to claim 7, to its target protein, to a person in need thereof.